European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105

INTERNATIONAL WG1-WG4 MEETING on

New Sensing Technologies and Methods for Air-Pollution Monitoring European Environment Agency - EEA Copenhagen, Denmark, 3 - 4 October 2013 SESSION 9: DISCUSSION AND FUTURE PLANS OF ACTION TD1105

Action Start date: 01/07/2012 - Action End date: 30/06/2016 - Year 2: 2013-2014 (Ongoing Action)

FUTURE PLANS AND PRIORITIES OF ACTION TD1105

by the EU Framework Programme

Michele Penza

Function in the Action: Action Chair ENEA - Brindisi, Italy

EUROPEAN_ ESF provides the COST Office

OUTLINE

- WG1 PRIORITIES: Sensor Materials and Nanotechnology
- WG2 PRIORITIES: Sensors, Devices and Systems for AQC
- WG3 PRIORITIES: Environmental Measurements and Air-Pollution Modelling
- WG4 PRIORITIES: Protocols and Standardisation Methods
- SIG1-SIG4 PRIORITIES:
 - ✓ SIG1: Network of Spin-offs
 - ✓ SIG2: Smart Sensors for Urban Air Monitoring in Cities
 - ✓ SIG3: Guidelines for Best Coupling Air-Pollutant & Transducer
 - ✓ SIG4: Expert Comments for Revision of Air Quality Directive

WG1 PRIORITIES: Sensor Materials and Nanotechnology

WG1-Leader:	 Prof. Juan Ramon Morante, IREC, Barcelona, Spain Prof. Jyrki Lappalainen, Oulu University, Finland (<i>Rome Meeting WG1 Chair</i>)
WG1 Compositi	on: 3 Sub-WG Leaders and 25 Members
PRIORITY #1:	<u>Metal Oxides (MOX)</u> : Thin Films, Nanoparticles, Nanowires, Nanotubes, Nanoneedles, Nanoporous Forms of Materials (ZnO, SnO ₂ , WO ₃ , TiO ₂ , InO _x , NiO, and magnetic materials Fe ₃ O ₄ , doped dielectrics BaSrTiO ₃ , etc.)
PRIORITY #2:	Carbon Nano MATerials (CNMAT): Nanotubes, Nanoparticles, Graphene, 1D and 2D-nanostructures and their functionalization and doping
PRIORITY #3:	Molecular, Organic/Inorganic Materials: Heterostructures (semiconductors, polymers) and Schottky junctions
PRIORITY #4:	 Processing of low-cost sensors on flexible substrates: Printing techniques, inkjet printing, spin coating, droplet casting, etc. Template assisted growth of nanostructures
PRIORITY #5:	Other sensitive materials: biomaterials, enzymes, antibodies, etc.
PRIORITY #6:	Chemical modifications of the sensor materials with tuned properties to address selectivity and specific applications
PRIORITY #7:	Combination of different approaches and defining the state-of-art of the best available technologies, for example, to realize smart sensor structures

WG2 PRIORITIES: Sensors Devices and Sensor-Systems for AQC

WG2-Leader:		Prof. Andreas Schuetze, Saarland University, Germany
WG2 Compos	sition:	4 Sub-WG Leaders and 40 Members
PRIORITY #1:	✓ Allow app	-transducers for integration of various nanomaterials : blication specific adaptation and low cost er (down to μW range for single nanowire)
PRIORITY #2:	higher sele ✓Well-know Spectrosco ✓New met mass and o	operation of Sensors to gain more than one signal from a single sensor for ctivity and stability as well possible self-monitoring at the sensor module level: w but not yet standard: temperature cycling, Electrical Impedance opy (EIS) hods: RF, optical, excitation (gas sensitive solar cell), pulsed polarization, dissipation in Quartz Crystal Microbalance (QCM) g of interaction of sensing layer and gas/dust/aerosol
PRIORITY #3:	Selective f	ilters integrated in sensors or sensor modules
PRIORITY #4:	Dosimeter	approach: integrating sensor response
PRIORITY #5:	Nanoparti	cle detection for dust and aerosols
PRIORITY #6:		Sensor Modules for NO _x , O ₃ , NH ₃ , H ₂ S, SO ₂ , VOC: cs combined with sensor elements
PRIORITY #7:	 ✓ Data pre- computing) 	Sensor Nodes and heterogeneous networks: processing and processing (in node and/or in network: parallel and distributed fficient communication

WG3 PRIORITIES: Environmental Measurements and Air-Pollution Modelling

WG3-Leader:		Prof. Ole Hertel, Aarhus University, Denmark
WG3 Composit	tion:	3 Sub-WG Leaders and 35 Members
PRIORITY #1:	 ✓ Various <i>sensors</i> in ✓ Sensors ✓ Sensors ✓ Sensors emissions energy eff 	ental Measurements: portable sensor-systems to be explored as <i>personal sensors</i> and <i>wearable</i> the life of every day (e.g., bikes, pedestrians, cars, smart cities, etc.) for air quality monitoring at outdoor applications for air quality monitoring at indoor applications (e.g., green buildings, low CO ₂ , offices, schools, air-ventilation systems, HVAC devices, open spaces, indoor iciency, etc.) s sensors and wireless sensor networks
PRIORITY #2:	✓ Air-pollu	y Modelling: tion dispersion modelling at local, urban, regional and global range al weather forecasting (gases, vapors and particulate matter)
PRIORITY #3:		

WG4 PRIORITIES: Protocols and Standardisation Methods

WG4-Leader:	Prof. Ingrid Bryntse, SenseAir SA, Delsbo, Sweden
WG4 Compositie	on: 3 Sub-WG Leaders and 25 Members
PRIORITY #1:	Odorants: ✓H ₂ S and organic thiols (mercaptans) ✓Odour monitoring
PRIORITY #2:	Particulate Matter (PM): ✓PM ₁₀ , PM _{2.5} , Ultrafine PM ✓Black Carbon (BC)
PRIORITY #3:	VOC, Indoor Air : \checkmark CH ₂ O methanal (formaldehyde) \checkmark C ₆ H ₆ (Benzene) and other BTX (Benzene, Toluene, Xylene)
PRIORITY #4:	 Inorganic Gases: •NO₂ (nitrogen dioxide) & O₃ (ozone), analysed simultaneously •CO₂ (carbon dioxide) (ventilation indicator and greenhouse gas)
PRIORITY #5:	Aiming at Low-cost Sensors: ✓ <u>Small sensor</u> with simple PCB: €100 (OEM manufacturer price to a customer which use in their system) ✓ <u>Sensor modules</u> : €300
PRIORITY #6:	Laboratory and Field Testing at National Accredited Test Laboratories

SIG1 PRIORITIES: Network of Spin-offs

SIG1-Leader:	Dr. Marco Alvisi, ENEA, Brindisi, Italy	
SIG1 Composition	on: 1 SIG1 Deputy and 15 Members	
PRIORITY #1:	Chemical and radiation environmental monitoring	
PRIORITY #2:	Dzone sensors, NO_x , CO and SO_2 sensors for automotive applicati	ons
PRIORITY #3:	mprove stability of the available sensors, compatibility with CMOS nicroelectronics, soft CMOS post-processing methods for reproducing high throughput manufacturing	ble
PRIORITY #4:	Foxic and explosive (hydrogen) gas leakage	
PRIORITY #5:	Biosensor based on enzyme for dioxin and Persistent Organic Pollu POP), work on POP detection	utants
PRIORITY #6:	OC detection developing sensors modules and sensor systems	
PRIORITY #7:	ndoor air quality control, leak detection	
PRIORITY #8:	Odour monitoring system (odour-telephone)	
PRIORITY #9:	Enhancement of the sensing properties by introducing functional re groups	ceptive
PRIORITY #10:	Coupling different transduction modes in the same device	

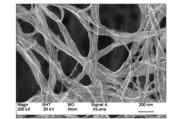
SIG2 PRIORITIES: Smart Sensors for Urban Air Monitoring in

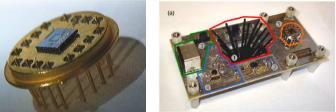
SIG2-Leader:	Prof. Rod Jones, University of Cambridge, Cambridge, UK
SIG2 Compositio	on: 1 SIG2 Deputy and 30 Members
PRIORITY #1:	 Discussion of «Smart»: ✓ Self-monitoring: e.g., fault detection ✓ Clever design/manufacturing: e.g., self-calibrating. <u>Ideally both needed</u>. ✓ Smart use of «stupid» (not educated) sensors
	 Sensor Systems: ✓ sensors + analysis/correction + archiving + data mining + mapping + interpretation/dissemination ✓ Deliver answers to: •General public (low pollution routes/traffic flow) •Legislature/compliance •Health impacts community •Activity goes way beyond <i>simple</i> sensor development
	Other Issues: ✓Transferring A/Q knowledge from one environment to another (do we have sensor networks everywhere ? Continuously deployed ?) ✓Use of modelling ? Philosophy of testing models, combining model/sensor network outputs - Data assimilation - Applicability ✓High cross-disciplinary, are all other communities represented here ?
PRIORITY #4:	Roadmap issues to be discussed more in SIG2

SIG3 PRIORITIES: Guidelines for Best Coupling Air-Pollutant and Transducer

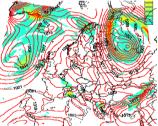
SIG3-Leader:	 Prof. Giorgio Sberveglieri, University of Brescia, Brescia, Italy Prof. Eduard Llobet, Universitat Roviri I Virgili, Tarragona, Spain (<i>Rome Meeting SIG3 Chair</i>)
SIG3 Composition:	1 SIG3 Deputy and 15 Members

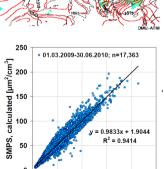
PRIORITY #1:	Identify which are the physical parameters being affected by gas/material interaction (for a rationale design of the transducer)
PRIORITY #2:	Continuous measurements versus exposure/recovery measurements
PRIORITY #3:	Study of the best coupling of the air pollutants associated to a given transducer
PRIORITY #4:	Case-studies: ✓ Common evaluation protocols for sensors (<i>sensor benchmarking</i>) ✓ Study the combination of <i>different transduction principles</i> to enhance selectivity ✓ Selection of <i>target applications</i> so specifications (i.e., sensitivity, selectivity, interference rejection, use of sample pre-treatment, response time, etc.) can be set


SIG4 PRIORITIES: Expert Comments for the Revision of the Air Quality Directive SIG4-Leader: Dr. Thomas Kuhlbusch, IUTA eV, Duisburg, Germany **1 SIG4 Deputy and 25 Members** SIG4 Composition: **PRIORITY #1:** Sensor quality demands may be lower than those those of reference methods. Nevertheless, characterization is needed and specific data quality requirements have to be set **PRIORITY #2: Modelling** of urban air pollution and population exposure can be improved by sensors due to higher spatial resolution **PRIORITY #3:** Ammonia being a precursor for PM might be worth more attention: sensor networks could help in identifying sources; increasing controbutions from traffic and other sources in particular situations (e.g., garbage boxes) **PRIORITY #4:** Review of **AQD implementation problems** and proposals how these could be targeted by application of sensors **PRIORITY #5:** Recommendations on: ✓ New Metrics (e.g., Black Carbon) ✓ Data Quality Requirements ✓ Use for Model Improvements ✓ Specific Research Needed **PRIORITY #6: Guidelines** on *Data Quality Requirements* for sensors to be used in relation to AQD (e.g, support indicative screening or complementary modeling) **PRIORITY #7:** SIG4 addressing AQD revision planned for 2018 !


Challenges addressed by Action TD1105

- Nanomaterials for AQC sensors
- Low-cost Gas Sensors
- Low-power Sensor-Systems
- Wireless Technology (Environmental Sensors Network)
- Air Quality Modelling
- Environmental Measurements
- Standards and Protocols





Contact Details

- CSO Approval:
- Kick-off Meeting:
- Start of Grant:
- End of Grant:
- 01 Dec. 2011 16 May 2012 01 July 2012
- 30 June 2016

www.cost.eunetair.it

MC Chair:	Dr. Michele Penza, ENEA, IT
IVIC Chair:	michele.penza@enea.it
	Prof. Anita Lloyd Spetz
MC Vice Chair:	Linkoping University, SE
	<u>spetz@ifm.liu.se</u>
	Dr. Corinna Hahn
Grant Holder:	Eurice GmbH, DE
	<u>c.hahn@eurice.eu</u>
Scientific Secretary	Dr. Annamaria Demarinis Loiotile
Scientific Secretary:	<u>annamaria.demarinis@uniba.it</u>
Science Officer	Dr. Deniz Karaca
Science Officer:	Dr. Deniz Karaca deniz.karaca@cost.eu
Science Officer: Administrative	
	deniz.karaca@cost.eu
Administrative Officer:	deniz.karaca@cost.eu Dr. Kent Hung
Administrative	deniz.karaca@cost.eu Dr. Kent Hung kent.hung@cost.eu
Administrative Officer: Rapporteur ESSEM:	deniz.karaca@cost.euDr. Kent Hung kent.hung@cost.euProf. Kostantinos Kourtidis (GR)
Administrative Officer:	deniz.karaca@cost.eu Dr. Kent Hung kent.hung@cost.eu Prof. Kostantinos Kourtidis (GR) kourtidi@env.duth.gr
Administrative Officer: Rapporteur ESSEM:	deniz.karaca@cost.eu Dr. Kent Hung kent.hung@cost.eu Prof. Kostantinos Kourtidis (GR) kourtidi@env.duth.gr Prof. Joaquim Manuel Vieira (PT)

http://www.cost.eu/domains_actions/essem/Actions/TD1105